

 Buzzword Bingo Game

 v0.1.42

 Table of contents

 	Modules

 	Buzzword.Bingo.Game

 	Buzzword.Bingo.Game.Checker

Buzzword.Bingo.Game

A game struct and functions for the Multi-Player Buzzword Bingo game.
The game struct contains the fields name, size, squares, scores and
winner representing the characteristics of a game in the Multi-Player
Buzzword Bingo game.
Based on the course Multi-Player Bingo by Mike and Nicole Clark.

 Summary

 Types

 marked_count()

 Number of marked squares

 name()

 Game name

 player_score()

 A tuple of total points and number of marked squares

 points_sum()

 Total points

 scores()

 A map assigning a player score to a player

 size()

 Game size

 t()

 A game struct for the Multi-Player Buzzword Bingo game

 Functions

 haiku_name()

 Generates a unique, URL-friendly name such as "bold-frog-8249".

 mark_square(game, phrase, player)

 Marks the square having the given phrase with the given player,
updates the scores, and checks for a bingo!

 new(name, size, buzzwords \\ Buzzword.Cache.get_buzzwords())

 Creates a game struct with size x size random buzzwords from buzzwords.
The default value for buzzwords is provided by function
Buzzword.Cache.get_buzzwords/0.

 Types

 Link to this type

 marked_count()

 View Source

 @type marked_count() :: pos_integer()

Number of marked squares

 Link to this type

 name()

 View Source

 @type name() :: String.t()

Game name

 Link to this type

 player_score()

 View Source

 @type player_score() :: {points_sum(), marked_count()}

A tuple of total points and number of marked squares

 Link to this type

 points_sum()

 View Source

 @type points_sum() :: pos_integer()

Total points

 Link to this type

 scores()

 View Source

 @type scores() :: %{required(Buzzword.Bingo.Player.t()) => player_score()}

A map assigning a player score to a player

 Link to this type

 size()

 View Source

 @type size() :: pos_integer()

Game size

 Link to this type

 t()

 View Source

 @type t() :: %Buzzword.Bingo.Game{
 name: name(),
 scores: scores(),
 size: size(),
 squares: [Buzzword.Bingo.Square.t()],
 winner: Buzzword.Bingo.Player.t() | nil
}

A game struct for the Multi-Player Buzzword Bingo game

 Functions

 Link to this function

 haiku_name()

 View Source

 @spec haiku_name() :: name()

Generates a unique, URL-friendly name such as "bold-frog-8249".

 Link to this function

 mark_square(game, phrase, player)

 View Source

 @spec mark_square(t(), Buzzword.Bingo.Square.phrase(), Buzzword.Bingo.Player.t()) ::
 t()

Marks the square having the given phrase with the given player,
updates the scores, and checks for a bingo!

 Link to this function

 new(name, size, buzzwords \\ Buzzword.Cache.get_buzzwords())

 View Source

 @spec new(name(), size(), Buzzword.Cache.buzzwords() | [Buzzword.Cache.buzzword()]) ::
 t() | {:error, atom()}

Creates a game struct with size x size random buzzwords from buzzwords.
The default value for buzzwords is provided by function
Buzzword.Cache.get_buzzwords/0.

Buzzword.Bingo.Game.Checker

Checks for a bingo!

 Summary

 Functions

 bingo?(game, phrase, player)

 Returns true if all the squares of a line (row, column or diagonal)
containing the given phrase have been marked by the given player.
Returns false otherwise or when the given phrase cannot be found.

 Functions

 Link to this function

 bingo?(game, phrase, player)

 View Source

 @spec bingo?(
 Buzzword.Bingo.Game.t(),
 Buzzword.Bingo.Square.phrase(),
 Buzzword.Bingo.Player.t()
) ::
 boolean()

Returns true if all the squares of a line (row, column or diagonal)
containing the given phrase have been marked by the given player.
Returns false otherwise or when the given phrase cannot be found.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

